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It is shown how simple integration rules can be associated with the Fast Fourier 
Transform technique in order to obtain accurate results without reducing essentially 
the speed of computation. The results of several numerical experiments are presented. 

I. INTRODUCTION 

Due to the widespread use of the Fourier Transform, it is very important to 
have methods for numerical calculation, that are both fast and accurate. In practice 
we do not compute the infinite Transform of a time-function f(t) but the Finite 
Transform 

G(w) = l’f(t) eciwt dt, (1) 
0 

the functionf(t) being known only at a finite number of equidistant points 

tj = jAt = jT/N, j = 0,l ,..., N - 1. (2) 

When 4(w) is wanted at a large number of equally spaced points, the computing- 
time of (1) is tremendously reduced by using the Fast Fourier Transform technique 
(F.F.T.) proposed by Cooley and Tukey [I]. The integral (1) is approximated by 

N-l 

G1(w) = (T/N) c f(tJ epiwtj, 
j=O 

(3) 

and calculated for the following values of w: 

wk = k do = k(2rIT), k = 0, 1,. . ., N - I, (4) 

N being a power of 2. When the data are noisy, e.g., when working with rounded 
numbers, the F.F.T. gives a total error smaller than when summing directly, the 
improvement ratio being proportional to N/log N [2]. 
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The numerical integration rule represented by (3) is a very crude one, the 
truncation error E being proportional to At = T/N. As it has been shown by 
Cooley, Lewis and Welch [3], if the function f(t) has additional properties the 
order of the method is higher; e.g., iff(0) =f(r) (3) becomes the usual trapezoidal 
rule so that E = 0((At)2) or if the odd-order derivatives f’(t), f”(t),...,f(““-l’(t) 
are equal at the end-points 0 and T, then (3) is equivalent to the trapezoidal rule 
with end corrections and E = O((At)2”+1). 

If the functionf(t) has none of these properties and one needs a better accuracy, 
one uses a higher order numerical quadrature formula, the classical one for this 
type of integral being that proposed by Filon [4], with a truncation error 
E = o((At)3). 

It seems therefore that, except in particular cases, either one can compute the 
Finite Transform very fast but then the accuracy is low, or else one obtains higher 
accuracy but then the speed is drastically reduced. Mandel and Bearman [5] 
proposed methods to reconciliate speed and accuracy by associating the F.F.T. 
with a modification of an integration formula based on the trapezoidal rule and 
also with Filon’s method. They also compared the accuracy of the results obtained 
by using these techniques. 

In the present paper we show with illustrative examples how known numerical 
techniques associated with the F.F.T. give very accurate results without reducing 
essentially the computational speed. 

2. THE F.F.T. AND ~NTECRATION RULES WITH EQUIDISTANT NODES 

As has been mentioned previously, if f(0) =f(T), (3) is equivalent to the 
trapezoidal rule, as for the values (4) of w, the integrand of (I), 

F(t) = f(t) e+J’, (5) 

has equal values at the end-points of the integration interval to = 0 and tN = T, 
so that 

N-l 

@I(W) = At c F(4) = At 1/2[F(t,,) + F(tN>] + 1 I;(tj> 
j=O 1 

N-l 

/* 
(6) 

J=l 

In fact, the imaginary part of the integrand has equal values at the end-points 
even iff(t) does not, and this explains why the F.F.T. gives more accurate results 
for the imaginary part of the Transform QI = - lrf(t) sin ot dt, than for the 
real part QR = j’Jf(t) cos w dt. 

Suppose that we know the value off(t) for t = tN . Then, the auxiliary function 

g(t) = f(t) - f(T) ; fw t -f(O) (7) 
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obtained fromf(t) by removal of a linear trend ha; equal values at the end-points 
so that the real part of the transform Y(w) = J0 g(t) e-irut dt will be calculated 
by the F.F.T. according to the trapezoidal rule. Lanczos [6] proposed the removal 
of the linear trend in order to improve the convergence of the Fourier series off(t). 
As it turns out, this operation has an improving effect also on the accuracy of the 
Fourier coefficients. The imaginary part will be calculated even with a better 
accuracy, as the corresponding integrand G(t) = g(t) sin wt satisfies also the 
condition G’(0) = G’(T). The Fourier Transform Q(w) will be then obtained from 

By using this procedure (let us call it “trapezoidal F.F.T.“) we improve accuracy 
without reducing essentially the speed of calculation, the number of additional 
arithmetic operations needed being proportional to the number of integration 
points N. It may happen in practice that the trapezoidal F.F.T. even reduces 
the number of operations as it gives a much better accuracy with a smaller number 
of integration points. 

In order to associate the F.F.T. technique with higher-order integration for- 
mulas we introduce the auxiliary function 

where aj are proportional to the weights of some integration rule with equidistant 
nodes for calculating Y(U) 

N-1 
Y(w) = JTg(t) ewiwt dt N Nfl qg(tj) epiwtj = ?zo h(tJ e-iwfJ. (10) 

0 j=O 

The last sum is of the form (3) and the F.F.T. can be applied. 
We experimented with two composite integration rules based on higher-order 

closed Newton-Cotes formulas: the Simpson rule and the 5-points rule 

s 

x4 

$x) dx = g (7fo + 32f, + 12fi + 32f, + 7f4), 01) 

the truncation error being O(h4) and O(P), respectively. The results shown 
illustrate the known fact that the Newton-Cotes formulas are less accurate when 
large numbers of points are used and should be avoided. 
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3. NUMERICAL RESULTS 

Values of the imaginary part of the Transform @Jw) as calculated by using 
the methods described previously and compared with those given by Filon’s 
method, the usual F.F.T. and the exact ones for the function f(t) = t cos mot, 
are shown in Tables I and 11. This function was considered for illustrating numerical 
integration procedures by Davis and Rabinowitz [7]. In Table I, wU = I, while 
in Table II, w,, = 50. In Table III are shown values of the real part of the Trans- 
form GR(w) for the same function, for w0 = 50. The vertical lines within the num- 
bers appearing in the tables mark the end of the string of digits that coincide with 
those in the exact solution. 

Although the numbers shown in the tables speak for themselves, we want to 
stress the following general points. 

For moderate values of w, the trapezoidal F.F.T. is almost as accurate as Filon, 
while higher order composite formulas associated with the F.F.T. are more 
accurate, as it should be. For large values of w or for a very oscillatory integrand, 
the Filon’s method (even for 19 = w dt < 1) as well as the higher-order methods 
are so inaccurate that even the order of magnitude of the result is wrong so that 
the only method to be used seems to be the trapezoidal F.F.T. The results for 
large w calculated by using Filon’s method are given only for the sake of compari- 
son, as this method is most accurate and useful whenf(t) is a reasonably smooth 
function. 

4. THE ROMBERG INTEGRATION 

Computing the Fourier Transform Y(w) of g(t) instead off(t) has an additional 
advantage: One can improve the accuracy by using the Romberg procedure, 
i.e., by building the sequence 

for several values of k, where Z$: is the result given either by the simple trapezoidal 
rule or by the trapezoidal rule with end-corrections with Nj integration points and 

N,,, = 2N, . (13) 

For illustration, we give in Table IV some values of the imaginary part of the 
Transform for f(t) = t cos w,t with w,, = 50. Here we have to take k, = 1. 
In Table V are given the values of the real and imaginary parts of the Transform 
for the function f(t) = eat sin pt for ill = 0.1, /? = 0.5. For the real part of the 
Transform, k, = 0, and for the imaginary part, k, = 1. 
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